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Glenn Research Center

Setup Issues

Setting up the CFD simulation concerns several issues:

• WIND Input Data File 

• Time and Space Marching

• Flux Formulation

• Boundary Condition Inputs

• Flowfield Initialization

• Damping Initial Transients
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Glenn Research Center

• Input data file (.dat) is ASCII file.
• File contains descriptive keywords.
• Online documentation lists all 

keywords.

WIND: Input Data File

Example Input Data (*.dat) file:

RAE 2822 Airfoil. 2D Transonic Flow.
Mach = 0.729. Alpha = 2.31 deg.
Single zone C-grid 369 x 65.

/Freestream      Mach  p(psi) T(R) AOA  Beta
freestream static 0.729 15.8  460.0 2.31 0.0

downstream pressure freestream zone 1

turbulence model spalart allmaras

dq limiter on

implicit boundary on

cycles 200
iterations per cycle 10 print frequency 10

cfl 5.0

end

First 3 lines are 
for titles.

Specifies choice of 
turbulence model.

Specifies the number 
of cycles to run.

Specifies the CFL number.

Freestream keyword sets reference 
conditions, which are input in units 
consistent with grid file.

Specifies additional information for
the outflow boundary condition.

Specifies use of limiter for change 
in solution (dq) over an iteration.

Specifies use of implicit boundary 
conditions on the airfoil surface.

Specifies the number of iterations per cycle
and print frequency to list output file.

“/” indicates a comment line .
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Basics of Time-Marching Methods

The finite-volume formulation yielded the ordinary differential equation

This equation is non-linear in that

and

The variable t is time and indicates that the solution may be time-varying 
(unsteady).  The time variable gives the equation a mathematically hyperbolic
character.  That is, the solution is dependant on the solutions at previous times.  
We can use this trait to develop time-marching numerical methods in which we 
start with an initial solution (guess) and march the equations in time while 
applying boundary conditions.  The time-varying solution will evolve or the 
solution will asymptotically approach the steady-state solution. 

R
dt

Qd ˆ
ˆ

=

( )trQ ,ˆ r ( )trQR ,,ˆˆ r

Q̂
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Methods for Steady Problems

If we assume the solution is steady, and so, time is not a variable, then the 
equation takes the form

we have at least a few other options for numerical methods:

Iterative Methods.   These methods assume the equation is mathematically 
elliptic and start with an initial solution and iterate to converge to a solution.

Direct Methods.  These methods also assume the equation is elliptic, but solve
the system of equations in a single process.  

Space-Marching Methods.  These methods assume that equation can be cast as a 
mathematically parabolic equation in one of the coordinate directions and 
marched along that coordinate.  (i.e. Supersonic flows in x-direction).

( ) 0,ˆˆ =rQR
r
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Time Discretization

We will first consider time-marching numerical methods.  We first need to 
consider a finite time step δt

where n is the index for time.  The δ indicates a finite step (not differential).

A couple of concepts:

1. The marching of the equation over a time step can occur over one or more 
stages and one or more iterations.  

2. The marching can be done explicitly or implicitly.  An explicit method uses 
known information to march the solution.  An implicit method uses known 
and unknown information and requires solving a local system of equations.

nnn ttt −= +1δ
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Euler Methods

To demonstrate these concepts, consider the Euler methods, both explicit and 
implict.  The methods are single-stageand first-order accurate in time.  The  
the left-hand side of the equation is discretized as

where

and so, 

But how to discretize in in time?

Explicit:                                                        Implicit:

R
t

Q
n

n

ˆ
ˆ

=
δ
δ

nnn QQQ ˆˆˆ 1 −= +δ

RtQQ nnn ˆˆˆ 1 δ+=+

R̂

nnnn RtQQ ˆˆˆ 1 δ+=+ 11 ˆˆˆ ++ += nnnn RtQQ δ
( Unstable! )
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Linearization of 

The Euler Implicit Method introduced an implicit right-hand-side term.  This 
term is approximated using a local linearization of the form

The flux Jacobian can be defined as

such that the Euler implicit methodcan be expressed as

or

where I is the identity matrix.

1ˆ +nR

( )21 ˆ
ˆ

ˆ
ˆˆ tQ

Q

R
RR n

n

nn δδ Ο+










∂
∂+=+

Q

R
ˆ

ˆ
ˆ

∂
∂=A

( )nnnn QRtQ ˆˆˆˆ δδδ A+=

[ ] nnnn
RtQt ˆˆˆ δδδ =− AI
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Trapezoidal Time Difference

Trapezoidal (mid-point) differencing for second-order accuracy in time:

Make substitution of equation,

Use linearization to form

























+










≈

+1ˆˆ

2

1ˆ nn

td

Qd

td

Qd

td

Qd

( ) ( ) 



 +=

+1ˆˆ
2

1ˆ nn

n

n

RR
t

Q

δ
δ

nnn
n

RtQt ˆˆˆ
2

1 δδδ =




 − AI
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Three-Point Backward Time Difference

Three-point backward differencing for second-order accuracy in time:

This results in the form

t

QQQ

td

Qd nnn

δ2

ˆˆ4ˆ3ˆ 11 −+ +−≈

nnnn
n

RtQQt ˆ
3

2ˆ
3

1ˆˆ
3

2 1 δδδδ +=




 − −AI
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MacCormack Method

An example of a multi-stage, explicit method is the MacCormack Method, 

Stage 1:

Stage 2:

and then ( ))2(1 ˆˆ
2

1ˆ QQQ nn +=+

nnn RtQQ ˆˆˆ )1( δ+=

)1()1()2( ˆˆˆ RtQQ nδ+=
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Runge-Kutta Method

Another example of a multi-stage, explicit method is the Runge-Kutta Method. 
The four stage method has the form:

Stage 1:

Stage 2:

Stage 3:

Stage 4:

and then

Typical coefficients are:    α1 = 1/4,  α2 = 1/3,  α3 = 1/2,  α4 =1.

)4(1 ˆˆ QQn =+

nnn RtQQ ˆˆˆ
1

)1( δα+=
)1(

2
)2( ˆˆˆ RtQQ nn δα+=

)2(
3

)3( ˆˆˆ RtQQ nn δα+=
)3(

4
)4( ˆˆˆ RtQQ nn δα+=
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Time Step Size Control

The size of the time step δ t used in the time-marching methods requires 
several considerations:

• Resolution of time variation (time scale of a fluid particle).

• Stability of the numerical method.

• CFL stability condition:

ν ,   Courant-Friedrichs-Lewy (CFL) number (explicit methods generally 
require ν < 1, but implicit methods allow larger numbers).

∆x,  Resolution of the finite-volume cell.

,   Eigenvalues (wave speeds).

λ
νδ

ˆ
x

t
∆≤

λ̂
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Time Steps, Iterations, and Cycles

The numerical method marches the solution over a time step δ t.  An iteration

is the numerical process of taking a single time step.  A cycle is one or more 

iterations.

Numerical errors exist in most methods that may not result in a second-order 

solution in time over one iteration.  Multiple sub-iterations of the numerical 

method may be needed to remove these errors.

One such method for performing these sub-iterations is the Newton Iterative 

Method.
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Newton Iterative Method

Consider the “standard” Newton iterative method for finding a root f(x) = 0,

which can be re-written as

or

where m is the iteration index.  Now consider the equations we wish to solve
and substitute them into the above form

m
x

m
mm

f

f
xx −=+1

( ) 011 =−+= ++ mmm
x

mm xxfff

mmm
x fxf −=δ

0ˆˆ =−⇒ RQf tQx ˆ⇒ Â
ˆ

ˆ
−=

∂
∂−⇒
Q

R
f x
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Newton Iterative Method (continued)

Substituting these into the Newton iteration equation yields

Substituting a three-point, backward time difference for the time derivative, 
applying some other small approximations, yields.

The right-hand-side of this equation is simply the discretized form of the 
equation

which is the equation we wish to solve.  Iterating the previous equation until the 
right-hand side becomes zero will assure that the equation is solved with the 
errors reduced.

( )m

t
mm RQQ ˆˆˆˆ −−=− δA

mnnnmm
m

RtQQQQt ˆ
3

2ˆ
3

1ˆ
3

4ˆˆˆ
3

2 1 δδδ +






 +−−=




 − −AI

0ˆˆ =− RQt
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ADI / Approximate Factoring

The Jacobian matrix      is three-dimensional.  We must now approximate the 
Jacobian for the finite-volume cell.   We consider a hexahedral cell with 
generalized coordinates (ξ, η, ζ).  We can write the Jacobian as the sum

Substituting this into the left-hand side of the Euler Implicit Method results in

This can be “factored” to allow a series a 3 one-dimensional numerical solutions.  
The factoring neglects third-order terms and higher and results in the form

This approach can be applied to the other implicit methods discussed.

ςηξ AAAA ˆˆˆˆ ++=

( )[ ] Qt ˆˆˆˆ δδ ξηξ AAAI ++−

Â

[ ][ ][ ] RQttt ˆˆˆˆˆ =−−− δδδδ ζηξ AIAIAI
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ADI / AF (continued)

The equations can then be solved in a series of one-dimensional solutions of the 
form:

The inviscid part of the Jacobian matrices can undergo further diagonalization to 
form a scalar penta-diagonal system that is numerically easier to invert, and 
which reduces computational effort.  However, this reduces the implicit method 
to first-order accuracy in time.

[ ] RQt ˆˆˆ
1 =− δδ ξAI

[ ] 12
ˆˆˆ QQt δδδ η =− AI

[ ] 2
ˆˆˆ QQt n δδδ ζ =− AI
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Solution Convergence Acceleration

There exists several methods for accelerating the convergence of the solution 
to a steady-state solution:

• Use a uniform global CFL number which results in varying local time 
steps.  Thus larger time steps are used in regions of larger cells.

• Use an incrementing CFL number that starts with a small CFL number to 
get past initial transients then increases the CFL number to converge.

• Limit the allowable change in the solution, δQ, over an iteration.

• Locally fix bad solution points by replacing the bad solution point with an 
average of local points.
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Other Methods Not Discussed

Several other solution algorithms are available in WIND that have not been 
discussed:

• Jacobi Method

• Gauss-Seidel Method

• MacCormack’s First-order Modified Approximate Factorization (MAFk)

• ARC3D 3-factor Diagonal Scheme
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Summary on Use of Marching Methods

Time-marching algorithms set by use of following keywords:

IMPLICIT
NAVIER-STOKES ITERATIONS
NEWTON
STAGES
DQ LIMITER

Details of keyword usage available in on-line documentation.

Default scheme of Euler Implicit method with Approximate Factorization 
is robust for steady-state flow simulations.

Space Marching for supersonic streamwise flows use MARCHING keyword.
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Flux Numerical Methods

The finite-volume formulation of the conservation equations resulted in the
equation   

where     was the flux of the flow across the control surface resulting from 
the approximation of the surface integral.  For a finite-volume cell, the flux 
was expressed as

Where

It was assumed that the flux was uniform over the cell face.

FP
dt

Qd ˆˆ
ˆ

−=

F̂

∑
=

=
nf

f
fFF

1

ˆˆ

( )[ ] ( ) fff dSnQgvF ˆˆ ⋅−−= D
rr
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Fluxes on a Hexahedral Cell

A hexahedral cell contains 6 quadrilateral faces, thus

where again,

∑
=

=

=
6

1

ˆˆ
nf

f
fFF

( )[ ] ( ) fff dSnQgvF ˆˆ ⋅−−= D
rr

Face f
( f is an index for the face )

fF̂

( ) fdSn̂

Area normal 
vector for 
face f

ξ

η

ς
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Numerical Flux on a Cell Face

The numerical flux on a cell face is

The normal area vector             is usually easily defined for a quadrilateral or 
triangular cell face.  The focus of the rest of this discussion is on numerical 
methods for computing

at a cell face.  

We first will assume that     is a known velocity for the cell face.

( )[ ] ( ) fff dSnQgvF ˆˆ ⋅−−= D
rr

( )[ ]fQgv D−− rr

( ) fdSn̂

g
r
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Numerical Flux on a Cell Face

We first consider that we have the states of 
the flow on the “left” and “right” of the cell 
face, QL and QR.  Our objective is to find the 
cell face flux.

One can define

A consistency conditionfor the numerical 
flux is that if QL = QR , then

fF̂

( ) fdSn̂
RQ

LQ

( )RLff QQFF ,ˆˆ =

( )LfL QFF ˆˆ = ( )RfR QFF ˆˆ =

RL FF ˆˆ =
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Central Difference Method

A central difference method for computing the flux is simply

The central-difference method works okay for elliptic components of the flux
because there is no preferred direction for the propagation of information.  

A simple central difference is often unstable, especially in the presence of 
strong gradients.  One solution is to add some second-order and fourth-order 
dissipation (artificial viscosity) to the flux.

Methods for computing D(2) and D(4) vary, but generally use second and 
fourth-order differences with switches to handle variations in Q.

( )RLf FFF ˆˆ
2

1ˆ +=

( ) )4()2(ˆˆ
2

1ˆ DDFFF RLf +++=
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Use of Central Difference Method

For the Navier-Stokes equations, the viscous shear stress and heat flux terms 
in the viscous component DV of the non-convective component D are elliptic 
and those flux components can be computed with the central difference 
method. 

Similarly, the fluxes of the turbulence and chemistry equations can be 
computed using the central difference method. 

The convective portion of the flux and the pressure term in the inviscid 
component DI of the Navier-Stokes equation have a hyperbolic character.  
This wave nature can be put to use to compute the flux using upwind methods.
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Upwind Methods

We expressed the non-convective portion of the flux of the Navier-Stokes 
equation as

This results in the cell-face flux being expressed as

or

We will now focus on computing the inviscid flux       using upwind methods.  
The focus will be on the use of Roe’s Upwind Flux-Difference Splitting 
Method.

V
NS

I
NSNS DDD +=

( )[ ]V
NS

I
NSNSf QgvF DD −−−= rrˆ

VI
fff FFF ˆˆˆ +=

I
fF̂
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Roe Upwind Flux-Difference Method

The Roe upwind flux-difference method computes the inviscid flux as:

where        is the flux difference computed as,  

( ) f
I

R
I

L
I
f FFFF ˆ

2

1ˆˆ
2

1ˆ ∆−+=

−+ ∆+∆=∆ FFF ˆˆˆ

mm
m

m wrF δλ r
∑

=

++ =∆
5

1

)(ˆ

mm
m

m wrF δλ r
∑

=

−− =∆
5

1

)(ˆ

F̂∆

Roe’s method is the default flux method in WIND.
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Roe Upwind Flux-Difference Method

The       are the eigenvalues that represent the speed of the waves.  The (+) 
indicate positive eigenvalues and the (-) indicates negative eigenvalues. 

The       are the right eigenvectors that represent the direction of propagation 
of the waves.   

The         are the Riemann invariants and represent the strength of the wave,

mλ

mr
r

mwδ

21 c

p
w

δδρδ −=

unwnw δδδ 312 −=

wnvnun
c

p
w δδδ

ρ
δδ 3214 +++=

vnunw δδδ 123 −=

wnvnun
c

p
w δδδ

ρ
δδ 3215 ++−=
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Roe Upwind Flux-Difference Method

The differentials are computed as

Flow properties at the face are computed using Roe-averaging

Similar for computing v, w, and ht.

LR ρρδρ −=

LR ppp −=δ
LR uuu −=δ

LR vvv −=δ
LR www −=δ

LR ρρρ =2

2/12/1

2/12/1

RL

RRLL uu
u

ρρ
ρρ

+
+=
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Higher-Order Projection

The choice of values of QL and QR have several option:

1) Use the values of the finite-volume cells to the “left” and “right” of the 
face.  This is a zero-order evaluation and will result in a spatially first-order 
flux.

2) Use an extrapolation of neighboring finite-volume cells to form a first-
order evaluation of Q at the face.  This will result in a spatially second-
order flux.

)(
2

1
1−−+= iiiL QQQQ

Qi
Qi+2Qi+1

Qi-1

QRQL

fF̂

)(
2

1
121 +++ −−= iiiR QQQQ
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Variation Limiting

The simple extrapolation formulas assume a smooth variation of Q; however, 
discontinuities in Q are possible (i.e. shocks).  Need some mechanism to 
sense such discontinuities and limit the variation of Q in these extrapolation 
formulas.   Modify the extrapolations by introducing a limiter φ,

This gets into the topic of TVD (Total Variational Diminishing) flux limiting 
methods, which we will not get into here.   The essential role of the limiter is 
to make φ → 0 in the presence of large variations, which make the flux 
spatially first-order.

)(
2

1
1−−+= iiiL QQQQ φ

)(
2

1
121 +++ −−= iiiR QQQQ φ
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Examples of Limiters

The possible functions (and theory) for limiters is varied.  A couple examples 
include: 

Superbee:

Chakravarthy:  

Where r is some ratio of the flow properties and indicates the amount of 
variation in the solution.  An example is

The β is a compression parameter  1 ≤ β ≤ 2, where a value toward 1 makes 
the limiter more dissipative.

{ }[ ]βφ ,min,0max)( rr =

( ) ( )[ ]2,min,1,2min,0max)( rrr =φ

i

i

Q

Q
r

δ
δ 1+=
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Flux Vector Splitting

An alternative to flux-difference splitting is flux-vector splitting that 
considers that the inviscid flux can be linearly separated

van Leer’s flux-vector splitting has the general form of     
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Other RHS Methods

Other methods for the “right-hand-side (RHS)” that will not be discussed:    

• Methods available for 3rd to 5th –order spatial accuracy.

• Roe’s method is modified to allow non-uniform grids.

• Roe’s method as used in the OVERFLOW code is available.

• Coakley method is available

• HLLE method is available (similar to Roe’s method)
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Summary on Use of Flux Methods

Flux algorithms set by use of following keywords:

RHS
BOUNDARY TVD
TVD
HLLE
SMOOTHING

Details of keyword usage available in on-line documentation.

Default scheme of second-order Roe’s flux difference splitting is fairly robust.

Use first-order scheme and smoothing during initial iterations to help damp 
out initial transients.

P
D

F
 C

reated w
ith deskP

D
F

 P
D

F
 W

riter - T
rial :: http://w

w
w

.docudesk.com



38

Glenn Research Center

Specifying Boundary Condition Inputs

The inputs for the boundary conditions are specified through some of the 
following keywords:

ACTUATOR / SCREEN
ARBITRARY INFLOW
BLEED
COMPRESSOR FACE
COUPLING
DOWNSTREAM MACH
DOWNSTREAM PRESSURE
IMPLICIT BOUNDARY
MASS FLOW
OUTFLOW NON-REFLECTING
PERIODIC
VORTEX GENERATOR
WALL FUNCTION
WALL SLIP
WALL TEMPERATURE

Details of keyword usage available in on-line documentation.
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Flowfield Initialization

The time-marching approach requires an initial solution for the entire flowfield

• Uniform flowfield based on conditions listed in the FREESTREAM
keyword

• Works fine for external flows and some time for internal flows; however, 
need to consider the mass imbalance created with the initial flowfield.

• Mimic real operations of an inlet (start up), especially for transonic flow.

• ARBITRARY INFLOW keyword can be used to initialize flowfield in a 
zone.  IJK_RANGE can be used to initialize for a range of grid points.
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Damping Initial Transients

Initial flowfield likely contains non-physical conditions, such as non-conserved 
mass flow that may cause temporary problems for the flowfield

Following keywords provide some capability to get past these initial transients:

RHS ROE FIRST
TVD FACTOR 0
SMOOTHING
SEQUENCE
DQ LIMITER

There may be significant variation at the start of iterations, but then solution 
calms down as iterative convergence is approached.  
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A subsonic diffuser case illustrates some pitfalls of flowfield initialization

Area ratio,  Aexit / Ainflow = 1.95 

Inflow:   Mach 0.6,   Pt = 10 psi,   Tt = 520 R,   Area = 7.5 in2

Mass flow through the diffuser is set by the inflow conditions and area        

Mass flow = 1.47 lbm/sec

Flow

Subsonic Diffuser Initialization1 of 5P
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Subsonic Diffuser Initialization  2 of 5

Approach 1: Uniform initial flow based on inflow conditions

Uniform flowfield
results in the mass 
flow varying with 
diffuser area

Initial outflow is 2.87 lbm/sec, but imposing 1.47 lbm/sec 
at the outflow will result in a hammershock forming in the 
diffuser that propagates upstream. The shock strength will 
decrease as it nears the entrance and supersonic flow will 
be removed.  However, the transient existence of the shock 
may cause problems for the numerical algorithms.
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Subsonic Diffuser Initialization  3 of 5

Approach 2:  Initialize with a lower Mach number that sets correct outflow

Set initial Mach number to 0.25 so that outflow would be about 1.47 lbm/sec.

However, accelerations were great enough to result in supersonic flow.
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Subsonic Diffuser Initialization  4 of 5

Approach 3: Initialize with a lower Mach number and outflow

Set the initial Mach number to 0.1 to create a low Mach number flow.

Start with 1.0 lbm/sec outflow for 500 cycles.

Step up to 1.2 lbm/sec outflow for another 500 cycles.

End up with desired 1.47 lbm/sec outflow.

Mimics startup 
procedures for 
real inlets
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Subsonic Diffuser Initialization  5 of 5

All three approaches yield same solution and have 
similar convergence behavior, although convergence 
of Approach 3 lags other approaches.  Static pressures 
and Mach numbers down the diffuser match.

P
D

F
 C

reated w
ith deskP

D
F

 P
D

F
 W

riter - T
rial :: http://w

w
w

.docudesk.com



46

Glenn Research Center

Supersonic Inlet Startup1 of 2

Mixed-compression supersonic inlet (NASA VDC inlet)

Mach 2.5 freestream

Mach 0.4 outflow at AIP (Aerodynamic Interface Plane)

Nozzle zone for outflow

Nozzle

AIP

Cowl

Centerbody

30-degree axisymmetric flow domain
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Initialize with uniform flowfield
based on freestream conditions

Forward shock structure sets up 
rather quickly

Nozzle creates a normal shock 
that propagates forward in the 
diffuser until a balance is obtained.
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Supersonic Inlet Startup2 of 2

# of Cycles
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At times a CFD simulation will fail.  Some tips on recovering:

• Check CFL number, using a lower CFL number or increment CFL

• Add more damping with RHS, SMOOTHING, TVD keywords

• Try to “fix” the solution with the FIXER keyword

• Reinitializing the flowfield with ARBITRARY INFLOW and the 
REINITIALIZE keywords

• Investigate grid problems (excessive skewing or stretching)

• Start with a coarser grid and then refine grid

• Is problem formulated incorrectly?

When Things Go WrongP
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